200+ Future Vaccines: Here’s A Glimpse of What to Expect

In 2013, the Pharmaceutical Research and Manufacturers of America (PhRMA) proudly announced that American biopharmaceutical companies had 271 new vaccines in development [1].

“The 271 vaccines in development span a wide array of diseases, and employ exciting new scientific strategies and technologies. These potential vaccines – all in human clinical trials or under review by the Food and Drug Administration (FDA) – include 137 for infectious diseases, 99 for cancer, 15 for allergies and 10 for neurological disorders”

Here’s a brief glimpse at what we can expect:

  1. A genetically-engineered nasal vaccine for obesity [2].
  2. A vaccine for malaria, using genetically-engineered parasites [3].
  3. A vaccine made from mouse cancer cells, for use in patients with colorectal cancer [4].
  4. A chimeric virus (two viruses genetically engineered/combined into one virus) vaccine for Japanese encephalitis [5].
  5. A genetically-engineered vaccine for Pseudomonas aeruginosa – apparently it is a major cause of hospital-acquired infections [6]. Note that they tested it on ventilated patients in an intensive care unit – as if they didn’t already have enough to deal with! In addition, vaccination made no difference whatsoever to rates of infection…but that didn’t stop them recommending further testing.
  6. A vaccine for Vigoo enterovirus 71…never heard of it, nevertheless, I’m sure they’ll be able to create a market for it [7].
  7. Plant-based oral vaccines for Type-1 diabetes [8].
  8. A vaccine made from genetically-engineered Listeria, for early-stage pancreatic cancer [9].
  9. Genetically-engineered papaya with an inbuilt vaccine for Taenia solium or T. crassiceps – a type of tapeworm found in pigs and humans [10].
  10. A vaccine for stress [11].

References:

[1] Pharmaceutical Research and Manufacturers of America (PhRMA), Medicines in development: Vaccines, http://phrma.org/press-release/medicines-in-development-vaccines. Accessed February, 2017.

[2] Azegami T, Yuki Y, Sawada S, et al. Nano-gel based nasal ghrelin vaccine prevents obesity, Mucosal Immunol, 2017, epub ahead of print.

[3] Kublin JG, Mikolajczak SA, Sack BK, et al. Complete attenuation of genetically engineered plasmodium falciparum sporozoites in human subjects, Sci Transl Med, 2017, 9(371).

[4] Seledtsova GV, Shishkov GV, Kaschenko EA, Seledtsov VI. Xenogeneic cell-based vaccine therapy for colorectal cancer: safety, association of clinical effects with vaccine-induced immune responses, Biomed Pharmac, 2016, 83: 1247-1252.

[5] Kosalaraksa P, Watanaveeradej V, Pancharoen C, et al. Long-term immunogenicity of a single dose of japanese encephalitis chimeric virus vaccine in toddlers and booster response 5 years after primary immunization, Pediatry Infect Dis J, 2016, epub ahead of print.

[6] Rello J, Krenn CG, Locker G, et al. A randomized, placebo-controlled phase II study of a pseudomonas vaccine in ventilated ICU patients, Crit Care, 2017, 21(1): 22.

[7] Wei M, Meng F, Wang S, et al. 2-year efficacy, immunogenicity, and safety of Vigoo enterovirus 71 vaccine in healthy chinese children: a randomized, open-label study, J Infect Dis, 2017, 215(1): 56-63.

[8] Posgai AL, Wasserfall CH, Kwon KC, et al. Plant-based vaccines for oral delivery of type-1 diabetes-related auto-antigens: evaluating oral tolerance mechanisms and disease prevention in NOD mice, Sci Rep, 2017, 7: 42372.

[9] Keenan BP, Saenger Y, Kafrouni MI, et al. A listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice, Gastroenterology, 2014, 146(7): 1784-1794.

[10] Fragoso C, Hernandez M, Cervantes-Torres J, et al. Transgenic papaya: a useful platform for oral vaccines, Planta, 2017, epub ahead of print.

[11] Elliot D. Preventing Mental Illness with a Stress Vaccine, The Atlantic, Nov 26, 2016.

(Visited 269 times, 1 visits today)