How Vaccines Are Really Made

  1. First, collect the nasal or throat washing or urine of someone suspected of having the disease [1]. Or…if you were Jonas Salk or Albert Sabin, inventors of first polio vaccines, you collected the feces from people suspected of having polio, and then diluted it in water [2]. Refrigerate.
  2. Next, prepare a culture of monkey cells or mashed chicken embryos, by cutting them up, and adding chemicals to make them mutate and turn cancerous [3].
  3. Now, arrange these cells, single layer, into a lab vessel, and add a digestive enzyme from pig or cow pancreas’ called Trypsin. Take care to use gloves and splash goggles, because you do not want pure trypsin getting in your eyes…and careful not to add too much, or you’ll kill the cells outright [4].
  4. Next, add a nutrient broth and sugar to the by now stressed cells and allow them to marinate (recover) for a couple of days [3].
  5. Now take your original specimen of snot/phlegm/urine from the fridge, add to the monkey/chicken cells, and then place in a warm incubation chamber.
  6. After one hour, inspect the mixture with a microscope, and if 50% of the cells are now distorted, you’re on a winner! Scrape the cells into a medium, such as diluted blood of an unborn cow (fetal bovine serum [5]). Store at -70C and you now have a ‘pure isolate’ with which to make a vaccine!
  7. Next, you take cells that have a) descended from a baby that was aborted 60years ago, whose cells have been kept alive artificially, and replicating ever since [6], or b) cells that have descended from the kidneys of an African green monkey, and kept alive artificially, and replicating in a laboratory [7], or c) cells from a cocker-spaniel that were harvested in 1958, and have not only been kept alive and replicating ever since, but have been turned cancerous [8], and then infect these cells with your ‘pure virus isolate’. Give it some time, so all the cells can get ‘infected’ [9].
  8. Collect the fluid (cellular waste products) that runs out while the virus is ‘replicating’ in the incubation tanks, and pass it through a sieve and separator [10].
  9. Add some benzonase, which is a genetically engineered endonuclease produced in e.Coli, that attacks and degrades DNA and RNA [11].
  10. Next, add formaldehyde to ‘inactivate’ it.
  11. Now, time to filter and concentrate it, via ultracentifugion, which spins the fluid at super high speed to separate tiny particles from larger particles [10].
  12. Add some more benzonase to digest any leftover monkey/human DNA fragments that remain. This process is obviously not fool-proof, since DNA fragments are still found in the finished product
  13. Add some more chemicals to your ‘pure, concentrated product’:
  • Stabilisers, such as albumin from the blood of other humans, or produced by yeast cells that have had the gene for human albumin inserted into them.
  • Emulsifiers, such as Polysorbate 80, to stop the vaccine contents from separating.
  • Acidity regulators, such as borax (sodium borate), to maintain pH balance [12].

Your product is now ready to be added to vials, and distributed.

If you’re making an egg-based vaccine, such as the influenza vaccine, the process is slightly different. Instead of adding your ‘pure virus isolate’ to a cell culture, you inject it into fertilised eggs and let the chicken embryo ‘manufacture’ your virus for you. After about 72hrs, a machine sucks out the contents of the egg, which are then spun at super-high speeds and filtered. You can then carry on adding the chemical formulations to finish your product [13].

It takes approximately one egg to make one vaccine, so that equals around 500 million eggs used every year, to manufacture flu vaccines [14].

Egg-based vaccines take about 4 months to make one batch of vaccines [15], which is obviously time-consuming, and probably why manufacturers are looking for different methods of manufacturing…

The above descriptions may vary slightly depending on what virus or medium or manufacturing system you are using, but that is basically how the process works for viral vaccines. (For toxoid vaccines, such as tetanus and diptheria, the bacterium is encouraged to produce toxins, which are then ‘inactivated’ via centrifugion, or formalin treatment, and then adsorbed onto aluminium salt [16].)

Now, I know what you’re thinking. Surely, today’s modern vaccines are not so crudely made? You’re almost right! Although vaccine manufacturing facilities today are highly computerised and stainless steel, a number of vaccines are still made as described above. But newer vaccines, such as the Hepatitis and HPV vaccines are made somewhat differently.

They don’t use a virus, they take certain ‘key molecules’ said to come from the virus in question, and then insert them into an insect cell culture, or yeast culture to reproduce the desired quantities.

As you can imagine, a few ‘key molecules’ don’t create much of an immune reaction, which is why adjuvants, such as aluminium hydroxide are required [17].

The HPV vaccine has to be manufactured this way, because nobody has yet figured out a way to entice cell cultures to produce human papillomavirus (make of that what you will) [18].

Another new technology now being explored is DNA vaccines – using naked DNA particles said to come from the pathogen in question, which are then coated onto gold particles and shot directly into muscles via the use of a helium gas-pressurised gun, such as used in gene therapy [17].

Note that Points 1-6 are set out in ‘The Vaccine Papers’, by Janine Roberts, based on a CDC/WHO document titled ‘Isolation and Identification of Measles Virus in Culture’. That document was edited, and some things removed, after Roberts drew attention to it in radio interviews. The full script of the original document can be found in her book [1]. The amended version is still online here.

References:

  1. Roberts J. The Vaccine Papers, Impact Investigative Media Productions, Wigan UK, 2010.
  2. Sabin AB, Boulger L, History of Sabin Attenuated Poliovirus Oral Live Caccine Strains I J Biol Stand, 1973, 115, 115-118.
  3. NPTEL, Lecture 6: Isolation and purification of viruses and components, https://nptel.ac.in/courses/102103039/6. Accessed February 3, 2019.
  4. MSDS for Trypsin, https://www.lewisu.edu/academics/biology/pdf/trypsin.pdf. Accessed February 2, 2019].
  5. Humane Research Australia, Use of Fetal Calf Serum, http://www.humaneresearch.org.au/campaigns/fetal_calf_serum, Accessed February 2, 2019
  6. Fletcher, MA; Hessel, L; Plotkin, SA (1998). “Human diploid cell strains (HDCS) viral vaccines”. Developments in Biological Standardization. 93: 97–107.
  7. Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. 2008;Appendix 4:Appendix 4E.
  8. Omeir RL, Teferedegne B, Foseh GS, et al. Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells. Comp Med. 2011;61(3):243-50.
  9. VxP Biologics, The Vero Vaccine Production Pipeline, https://www.vxpbiologics.com/the-vero-vaccine-production-pipeline/. Accessed February, 2019.
  10. Ibid
  11. Sigma Aldrich, Benzonase Nuclease, https://www.sigmaaldrich.com/catalog/product/sigma/e1014?lang=en&region=AU. Accessed February, 2019.
  12. Oxford Vaccine Group, Vaccine Ingredients, http://vk.ovg.ox.ac.uk/vaccine-ingredients#human serum albumin, Accessed January, 2019.
  13. The Telegraph, From chicken egg to syringe: How a flu vaccine is made, https://www.telegraph.co.uk/finance/newsbysector/pharmaceuticalsandchemicals/11138586/how-a-flu-vaccine-is-made-from-chicken-egg-to-syringe.html. Accessed February 3, 2019.
  14. Precision Vaccinations, 500 million easter eggs could be saved by the FDA, https://www.precisionvaccinations.com/chicken-eggs-produce-90-flu-vaccines. Accessed February 2, 2019.
  15. Singapore Government, Health Science Authority, Understanding Vaccines, Vaccine Development and Production, https://www.hsa.gov.sg/content/hsa/en/Health_Products_Regulation/Consumer_Information/Public_Advisories/Influenza_A_H1N1_information/H1N1_Vaccines/understanding-vaccines–vaccine-development-and-production.html. Accessed January, 2019.
  16. Plotkin S, Orenstein WA, Edwards K, Plotkin’s Vaccines, 7th Edition, 2018.
  17. Roberts J. The Vaccine Papers, Impact Investigative Media Productions, Wigan UK, 2010.
  18. Dixit R, Bhavsar C, Marfatia YS. Laboratory diagnosis of human papillomavirus virus infection in female genital tract. Indian J Sex Transm Dis AIDS. 2011;32(1):50-2.
(Visited 4,190 times, 2 visits today)