A Brief History of the ‘Antivax’ Movement

It is often assumed that the ‘anti-vax’ movement began with Andrew Wakefield, and ‘that autism study’, or former Playboy model Jenny McCarthy’s claims that her son’s autism was caused by vaccination.

But did these two events really cause tens of thousands of parents to begin questioning vaccines and getting embroiled in bitter skirmishes on social media? Personally, I had never heard of Andrew Wakefield, or Jenny McCarthy, when I first began to delve into the vaccine subject, in early 2010.

Opposition to vaccination is not a new phenomenon – for as long as there have been vaccines, there has been fierce opposition. Originally focused in England, that opposition really gained momentum when the Compulsory Vaccination Act was passed in Victorian England, in 1853.

The main pockets of opposition to compulsory vaccination were among the working class, and the clergy, who believed it was ‘un-Christian’ to inject people with animal products [1].

The original Vaccination Act in 1840 had provided free vaccination for the poor, to be administered by the Poor Law guardians. This law, however, was a failure, as the “lower and uneducated classes” did not take up the offer of free vaccination [1].

The Compulsory Vaccination Act of 1853 went much further – it ordered all babies up to 3 months old be vaccinated (administered by Poor Law Guardians), and in 1867, this was extended up to 14 years of age, and penalties for non-compliance were introduced.

Doctors were encouraged to report non-vaccinators to the authorities, by “financial inducements for compliance and penalties for failure”. While the 1853 Act had introduced one-off fines or imprisonment, the 1867 Act strengthened this to continuous and cumulative penalties, so that parent’s found guilty of default could be fined continuously, with increasing prison sentences, until their child reached 14 years of age [2].

(As an interesting side-note here, the vaccination laws were not the only incursions of the state during this time, at the expense of personal liberty, and private bodily autonomy. The Contagious Diseases Acts of 1864, 1866, and 1869, stated that any woman suspected of prostitution was required to be medically inspected for venereal disease. If found infected, she was to be confined in hospital for treatment, with or without her consent. The Notification of Infectious Diseases Acts in 1889 and 1899 required that all contagious diseases – except tuberculosis, which is curious, since it was a major killer at the time – be reported to the local medical officer, who could then forcibly remove the patient to hospital, whether they consented or not [1].

Meanwhile, the vaccination laws were tightened yet further in 1871 (ironically, the same year that a large smallpox epidemic raged across Europe and England – no doubt testament to how ‘effective’ the compulsory laws had been!), making it compulsory for all local authorities to hire Vaccination Officers [2].

In response to these draconian measures, the Anti-Vaccination League was formed in England, and a number of anti-vaccine journals were started, which “included the Anti-Vaccinator (founded 1869), the National Anti-Compulsory Vaccination Reporter (1874), and the Vaccination Inquirer (1879)”.

Numerous other writings and pamphlets were distributed widely – for example, 200,000 copies of an open letter titled ‘Current Fallacies About Vaccination’, written by Leicester Member of Parliament, P Taylor, were distributed in 1883 [2].

The vaccination process itself was both painful and inconvenient, for parents and children alike. The vaccinator used a lancet (a surgical knife with sharp, double-edged blade) to cut lines into the flesh in a scored pattern. This was usually done in several different places on the arm. Vaccine lymph was then smeared into the cuts. Infants then had to be brought back eight days later, to have the lymph (pus!) harvested from their blisters, which was then used on waiting infants [1].

After the stricter 1871 amendments to the law, parents could also be fined 20 shillings for refusing to allow the pus to be collected from their children’s blisters, to be used for public vaccination [1].

By this time, severe and sometimes fatal reactions to the vaccine were being reported, and doubts began to grow about how effective the vaccine really was [3].

The town of Leicester was a particular hot-bed of anti-vaccine activity, with numerous marches and rallies, demanding for repeal of the law, and advocating other measures of containment, such as isolation of the infected. These rallies attracted up to 100,000 people [4].

The unrest and opposition continued for two decades, and an estimated 6000 prosecutions were carried out, in the town of Leicester alone [3].

The following excerpts from the Leicester Mercury bears witness to the deep convictions held by those who refused to submit to the mandatory measures:

‘George Banford had a child born in 1868. It was vaccinated and after the operation the child was covered with sores, and it was some considerable time before it was able to leave the house. Again Mr. Banford complied with the law in 1870. This child was vaccinated by Dr. Sloane in the belief that by going to him they would get pure matter. In that case erysipelas set in, and the child was on a bed of sickness for some time. In the third case the child was born in 1872, and soon after vaccination erysipelas set in and it took such a bad course that at the expiration of 14 days the child died“.

Mr Banford was fined 10 shillings, with the option of seven days imprisonment, for refusing to subject a fourth child to the vaccine [5].

And again…‘By about 7.30 a goodly number of anti-vaccinators were present, and an escort was formed, preceded by a banner, to accompany a young mother and two men, all of whom had resolved to give themselves up to the police and undergo imprisonment in preference to having their children vaccinated. The utmost sympathy was expressed for the poor woman, who bore up bravely, and although seeming to feel her position expressed her determination to go to prison again and again rather than give her child over to the “tender mercies” of a public vaccinator. The three were attended by a numerous crowd and in Gallowtreegate three hearty cheers were given for them, which were renewed with increased vigour as they entered the doors of the police cells [6]”.

Eventually, there were so many vaccine refusers in the town of Leicester, that some local magistrates and politicians declared their support for parental rights, and encouraged their peers to do the same [3].

The law was finally relaxed in 1898, when new laws were passed, that allowed for conscientious objection to vaccination [7]. By the end of that same year, more than 200,000 certificates of conscientious objection had been issued, most among the working class, and many were women. [1]

Meanwhile in the United States, smallpox outbreaks in the late 1800’s led to vaccine campaigns, and subsequent opposition in the formation of The Anti-Vaccination Society of America in 1879, followed by the New England Anti Compulsory Vaccination League in 1882, and the Anti Vaccination League of New York City in 1885 [4].

The homeless and the itinerate were blamed for spreading smallpox, and in 1901, the Boston Board of Health ordered ‘virus squads’ to vaccinate men staying in cheap boarding rooms – by force [8].

Following a smallpox outbreak in 1902, the Cambridge Board of Health in Massachusetts mandated vaccination for all city residents. This led to possibly the most important, and controversial, judicial decision regarding public health.

One man, Henning Jacobson refused to comply with the mandate, on the grounds that it violated his right to care for his own body as he saw fit. The city filed criminal charges against him, which he fought, and lost, in court. He then appealed to the US Supreme Court, which ruled in the State’s favour in 1905, giving priority to public health over individual liberty [9].

The ‘anti-vaxxers’ have never really gone away in the intervening years, although sometimes they have been more vocal than others, such as in the 1970’s, when there was controversy throughout Europe, North America and Britain, about the safety and possible side effects of the diptheria-tetanus-pertussis vaccine [10].

In 1998, the vaccination argument again came to the forefront, with Andrew Wakefield’s case series published in the Lancet. Although the report was looking at a link between autistic disorders and bowel dysfunction, it mentioned in its conclusion that a number of parents believed their child’s symptoms began after MMR vaccination [11]. The authors felt this potential link deserved more investigation…

The furore and the fall-out are still ongoing. Wakefield was found guilty of failing to get proper ethics approval for the study, and he and a fellow investigator were subsequently ‘struck off’. Wakefield’s fellow investigator later challenged the decision, and won [12]. And while a number of researchers later confirmed the original findings, of bowel dysfunction in autistic children [13-16], Wakefield’s reputation and career have been left in tatters – the subject of mockery and derision.

Anybody who confesses to have doubts about the safety of efficacy of vaccines, as a general rule, get a taste of the same scorn and derision that Andrew Wakefield has received.

Even in the era of smallpox vaccination, the media tended to portray anti-vaxxers in a less-than-flattering light. At the time, the media referred to the debate as a “conflict between intelligence and ignorance, civilization and barbarism [9].

So, are anti-vaxxers really anti-science?

Not so, says…science.

In 2007, Kim et al analysed vaccination records of 11,680 children from 19 – 35 months of age, to evaluate maternal characteristics that might influence whether the child was fully vaccinated, or not.

They found that mothers with tertiary degrees and high incomes were the least likely to fully vaccinate their children, while mothers in poor minority families without high school diplomas were the most likely to fully vaccinate their children [17].

Similarly, a study in 2008 that investigated the attitudes and beliefs of parents who decided to opt out of childhood vaccine mandates, found that they valued scientific knowledge, were adept at collecting and processing information on vaccines, and had little trust in the medical community [18].

In 2017, the Australian Institute of Health and Welfare released their latest figures on vaccination rates. The national average was 93% of children fully vaccinated, yet in Sydney’s upmarket (ie. Highly educated, high income-earning professionals) inner suburbs and northern beaches, as few as 70% of children under 5 were fully vaccinated [19].

The same story was repeated in Melbourne, with the wealthiest – and by association, better educated – suburbs having the lowest vaccination rates. There was an ironic, and rather telling, opening paragraph in The Age, when reporting these figures: “Four of the wealthiest, healthiest suburbs of Melbourne have the worst child vaccination rates in the state [20]

(It does beg the question: Were they not vaccinated because they were healthy…or were they healthy because they were not vaccinated?)

Statistics gathered from Canada tell a similar story – a higher percentage of anti-vaxxers held a university degree, compared to the national average [21].

It seems that doctors and paediatric specialists are not always in agreement with current vaccine practice either – at least, not when it comes to their own children:  “Ten percent of paediatricians and 21% of paediatric specialists claim they would not follow [CDC] recommendations for future progeny. Despite their education, physicians in this study expressed concern over the safety of vaccines [22]”.

With the vaccine schedule becoming increasingly crowded, and governments moving ever towards compulsory vaccination, the anti-vaccination movement is again gathering momentum. Increasing numbers of parents are delaying, declining, or opting for alternative vaccine schedules [23-24].

Around the world, as vaccine scepticism is on the rise, history looks set to repeat, as governments are becoming increasingly more forceful in trying to curb the sentiment. Only time will tell how this round will play out…

References:

[1] Durbach, N. They might as well brand us: Working class resistance to compulsory vaccination in Victorian England. The Society for the Social History of Medicine, 2000, 13:45-62.

[2] Porter D, Porter R. The politics of prevention: anti-vaccinationism and public health in nineteenth-century England. Med Hist. 1988;32(3):231-52.

[3] Williamson S. Anti-vaccination leagues: One hundred years ago, Arch Dis Child, 1984, 59: 1195-1196.

[4] Wolfe, R.M., Sharpe, L.K. Anti-vaccinationists past and present. BMJ. 2002d;325:430-432.

[5] Leicester Mercury, 10th March, 1884.

[6] Leicester Mercury, 10th June, 1884.

[7] Wohl A. Endangered Lives: Public Health in Victorian Britain, 1984, Methuen, London, pp. 134-135.

[8] ] Albert, M., Ostheimer, K.G., Breman, J.G. The last smallpox epidemic in Boston and the vaccination controversy. N Engl J Med. 2001;344: 375-379.

[9] Gostin, L. Jacobson vs. Massachusetts at 100 years: Police powers and civil liberties in tensionAJPH. 2005;95:576-581.

[10] Baker, J. The pertussis vaccine controversy in Great Britain, 1974-1986. Vaccine. 2003;21:4003-4011.

[11] Wakefield AJ, Murch SH, Anthony A, et al. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive development disorder in children, Lancet, 1998, 3519103): 637-641.

[12] Professor John Walker Smith vs General Medical Council [2012] EWHC 503, http://www.eastwoodslaw.co.uk/wp-content/uploads/2013/03/Walker-Smith.pdf. Accessed September, 2017.

[13] Horvath K, Medeiros L, Rabszlyn A, et al. High prevalence of gastrointestinal symptoms in children with autistic spectrum disorder (ASD). J Pediatr Gastroenterol Nutr 2000, 31:S174.

[14] Horvath K and Perman JA. Autistic disorder and gastrointestinal disease, Current Opinion in Pediatrics 2002, 14:583-587

[15] Ashwood P, Anthony A, Torrente F, Wakefield AJ. Spontaneous mucosal lymphocyte cytokine profiles in children with regressive autism and gastrointestinal symptoms: Mucosal immune activation and reduced counter regulatory interleukin-10. Journal of Clinical Immunology. 2004:24:664-673.

[16] Torrente F, Anthony A, Heuschkel RB, et al. Focal-enhanced gastritis in regressive autism with features distinct from Crohn’s and helicobacter pylori gastritis. Am. J Gastroenterol. 2004;4:598-605.

[17] Kim SS, Frimpong JA, et al. Effects of maternal and provider characteristics on up-to-date immunization status of children aged 19-35 months. Am J Public Health, 2007, 97(2): 259-266.

[18] Gullion JS, Henry L, Gullion G. Deciding to opt out of childhood vaccination mandates. Public Health Nurs, 2008, 25(5): 401-408.

[19] Aubusson K, Butt C, Sydney postcode has Australia’s worst vaccination rate for five year old children, Sydney Morning Herald, 8th June, 2017.

[20] Butt C, Spooner R, Melbourne vaccination data: immunisation rates not improving in wealthy inner-city suburbs, The Age, 7th June, 2017.

[21] Chai C, Who are the anti-vaxxers in Canada? New poll profiles resistant group, Global News, 9th March, 2015.

[22] Martin, M. and Badalyan, V, Vaccination practices among physicians and their children. Open Journal of Pediatrics, 2012, 2:228-235.

[23] McCauley MM, Kennedy A, Basket M, Sheedy K. Exploring the choice to refuse or delay vaccines: a national survey of parents of 6- through 23-month olds, Acad Pediatr, 2012, 125): 375-383.

[24] Robison SG, Groom H, Young C. Frequency of alternative immunization schedule use in a metropolitan area, Pediatrics, 2012, 1301): 31-38.

Vaccines & Cancer: Is There a Connection?

“On August 10th, 1998 our only child, Alexander, was diagnosed with the most common pediatric brain cancer, medulloblastoma. He was two years old. Our lives were shattered. The next six months became a race against time to try to understand the disease, find the appropriate treatment, and save Alexander.

After two brain operations Alexander recovered quickly. We wanted to give our son the most effective cancer therapy possible. After weeks of research, many conversations with parents who had children with brain cancer, and conversations with doctors from all over the world, we selected the Burzynski Clinic in Houston, Texas. We arrived there and incredibly we were turned away. Dr. Burzynski said he was not allowed to accept Alexander. I’ll never forget it. We sat in an examining room. Alexander was smiling at the doctor.

“Why can’t you take Alexander?” I asked Burzynski.

“The FDA dictates who I can and can’t accept,” Burzynski said.

Burzynski explained to us that the FDA would only allow him to accept children who had suffered through chemotherapy and/or radiation and still had “measurable tumor” left in their brains. Alexander hadn’t had either of these “world class treatments” but already endured two brain operations (16 hours of surgery in total) and was tumor free for the moment. He had paid a dear price to be tumor free. His optic nerves had been injured so that his big brown eyes were stuck pointing in opposite directions, he lost the ability to cry and laugh and he temporarily lost the ability to walk.

“Please accept my son. He’s only two years old. His whole life is in front of him. I know your treatment works. I’ve spoken to several parents whose children are here. They had malignant brain tumors like Alexander but now they’re alive and well. You have to treat my son,” I begged.

Dr. Burzynski said simply, “I am sorry but I can’t.” Burzynski was saddened but he was powerless. The FDA had made him turn away many children just like Alexander.

Chemotherapy was started soon after and Alexander died in my arms three months later.”

The above is part of written testimony to Congressman Dan Burton and the Government Reform Committee on Vaccines, held in 1999. The parents went on to outline a number of symptoms occurring after vaccines, that eventually led to a diagnosis of brain cancer. They believed his cancer was linked to the numerous rounds of vaccines he’d had as a baby [1].

They are not the only ones who suspect that vaccines played a part in causing cancer.

In 2001, a letter published in the Daily Mail, went as follows “My daughter had the MMR booster at four and her arm immediately swelled up and she started to feel unwell. Within six weeks, she was diagnosed as having leukaemia, and the doctors we spoke to accepted that the MMR jab was probably the trigger for the disease by overloading her immune system — though they believe she may have been already susceptible to the illness” [2].

It’s not just parent’s wondering. Some doctors and scientists, too, have obviously wondered.

In 1965, Dr. Michael Innis, an Australian pathologist and haematologist, wrote to The Lancet, and outlined how rates of leukemia in children at Brisbane Children’s Hospital between 1958 to 1964 showed a statistically significant association with diptheria-tetanus-pertussis vaccination [3].

In 1994, researchers found that MMR vaccination (among other things) increased the odds ratio of childhood acute lymphocytic leukemia [4].

Researchers in 2007 proposed a correlation between childhood leukemia and the introduction of widespread diptheria vaccination – “the significant peak-age (2–5 years) first appeared after 1940 in Great Britain. Since then, childhood leukemia has almost unchangeable incidence. In 1940 the introduction of immunization against diphtheria on a national scale was begun in Great Britain [5]”.

Nevertheless, the long-term studies required to prove whether vaccines increase cancer risk are not necessary for vaccine approval, nor does the CDC feel they are required…[6].

The following chart shows the incidence of childhood cancers in Australia [7].

Note that the most common age for childhood cancer is in the 0-4 years age group. Also note, that this is the same time period where the average child receives more than 40 different vaccines. The second most common age is in the 10-14 years age group, which coincides with the scheduled booster shots and HPV vaccines for secondary school. The least represented age group in cancer statistics, is the 5-9 years, which happens to coincide with a period where the average Australian child receives no vaccines, or, a yearly flu vaccine at the most [8].

It is also interesting to note that the most common type of cancer in children is acute lymphoblastic leukemia, or ALL [9]. This occurs when there is an overproduction of immature white blood cells in the bone marrow, which prevents the production of red blood cells [10]. It seems plausible that chronic activation of the immune system could potentially cause such a state of affairs – an hypothesis that has already been explored in the scientific literature [11-12]

I have already written here about the fact that excessive stimulation of humoral immunity (which includes antibody production – the aim of vaccination) results in suppression of cell-mediated immunity. This same immune system imbalance has already been shown to play a central role in facilitating tumour growth, invasion and metastasis [13].

In a study of oral cancer patients in Nigeria, those with cancer were found to have significantly higher levels of antibodies, than healthy controls [14]. Did the cancer cause the shift towards antibody production, or did the immune imbalance cause the cancer?

Actually, it was demonstrated as early as 1907, that an inappropriate immune response enhances tumour growth [15]. In the 1950’s, the phenomena of antibodies promoting tumour growth was labelled “immunological enhancement” [16].

Research published in the Journal of Infectious Diseases in 1988 found that one-year-old infants vaccinated with measles vaccine experienced a significant decrease in the level of alpha-interferon produced by lymphocytes. This marked reduction was still evident when the study ended a year later [17].

Interferons are a type of cytokine. These molecules communicate between cells to co-ordinate immune responses that help to expel pathogens. Interestingly enough, interferon therapy is now being used as a cancer treatment [18].

Now, obviously none of this proves that vaccines cause cancer, but until the CDC or others are convinced of the urgency of long-term studies in this area, we are left to surmise and hypothesize, and grieving parents are left to forever wonder. Given that the CDC has a large vested interest in vaccines, with dozens of vaccine-related patents [19]…it’s not likely to be anytime soon…

References:

[1] Testimony of Raphaele Moreau-Horwin & Michael Horwin, Government Reform Committee – Vaccines; Finding the Balance Between Public Safety and Personal Choice. US House of Representatives, 12th August 1999.

[2] Letter, Daily Mail, 25th Jan, 2001.

[3] Innis MD, Letter to the Editor: Immunization and Childhood Leukaemia, The Lancet, 13th March 1965, i605.

[4] Buckley JD, Buckley CM, Ruccione K, et al, Epidemiological characteristics of childhood acute lymphocytic leukemia. Analysis by immunophenotype. The Children’s Cancer Group, Leukemia, 1994, 8(5):856-864.

[5] Ivanovski P, Ivanovski I, Childhood acute lymphoblastic leukemia is triggered by the introduction of immunization against diphtheria, Medical Hypothesis, 2007, 68(2): 324-327.

[6] CDC, Parents Guide to Childhood Immunizations, Part 4: Frequently Asked Questions, https://www.cdc.gov/vaccines/parents/tools/parents-guide/parents-guide-part4.html. Accessed March 2019.

[7] Cancer Australia: Children’s Cancer Statistics, https://childrenscancer.canceraustralia.gov.au/about-childrens-cancer/statistics. Accessed September, 2017.

[8] Ibid

[9] St. Jude Children’s Research Hospital, Acute Lymphoblastic Leukemia (ALL), https://www.stjude.org/disease/acute-lymphoblastic-leukemia-all.html. Accessed March 2019.

[10] Poplack DG (1985) Acute lymphoblastic leukemia in childhood. In: Altman AJ (ed) The Paediatric Clinics of North America. Saunders Philadelphia, pp 669–697.

[11] O’Byrne KJ, Dalgleish AG. Chronic immune activation and inflammation as the cause of malignancy, Brit J Cancer, 2001, 85(4):473-83.

[12] Dalgleish AG, O’Byrne KJ. Chronic immune activation and inflammation in the pathogenesis of AIDS and cancer, Adv Cancer Research, 2002, 84:231-76.

[13] O’Byrne KJ, Dalgleish AG, Browning MJ, et al. The relationship between angiogenesis and the immune response in carcinogenesis and the progression of disease, Eur J Cancer, 2000, 36(2):151-69.

[14] Akinmoladun VI, Arinola OG, Elumelu-Kupoluyi T, Eriba LO. Evaluation of humoral immunity in oral cancer patients from a nigerian referral centre, J Maxillofac Oral Surg, 2013, 12(4):410-3.

[15] Flexner S, Jobling JW. Proceedings of the Society for Exp Bio Med. 1907. p. 461.

[16] Kaliss N. Immunological enhancement of tumor homografts in mice: a review. Cancer Res, 1958, 992-1003.

[17] Nakayama T, Maehara N, Sadaki K, Makino S. Long-term regulation of interferon production by lymphocytes from children inoculated with live measles virus vaccine, J Infect Dis, 1988, 158(6): 1386-1390.

[18] Cancer Research UK, Interferon (Intron A), https://www.cancerresearchuk.org/about-cancer/cancer-in-general/treatment/cancer-drugs/drugs/interferon. Accessed March 2019.

[19] Google search of vaccine-related patents held by CDC, https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=vaccine+inassignee:centers+inassignee:for+inassignee:disease+inassignee:control&tbs=,ptss:g&num=100. Accessed March 2019.

5 Measles Facts Ignored by Mainstream Media

  1. Nobody knows how many people die globally from measles.

Global death statistics and statistics claiming to prove how many lives are saved by vaccinations are produced via computer modelling through the use of assumptions and mathematical algorithms. Two modelling systems are used: Lives Saved Tool (LiST) is used increasingly by donor organizations, and the WHO/IVB model used by the World Health Organization’s Department of Immunization, Vaccines and Biologicals.

Both have their shortfalls:

For example, WHO modelling assumes that all unvaccinated children will have a measles infection by their 20th birthday [1], and a proportion of those cases (ascertained by expert panel) would die from measles.

The LiST tool assumes that the ‘herd’ is protected when vaccination coverage reaches 90%, even though we know that outbreaks still occur in areas with 99% vaccination rate [2].

As an example of how these different modelling systems, with their inbuilt assumptions, can affect the numbers, researchers estimated measles deaths for the year 2000 via the two modelling systems. One model estimated 671,521 deaths, while the other model estimated 224,084 deaths – less than half [1].

2. Measles is notoriously hard to diagnose.

Once upon a time, anybody with a fever and a generalized rash may have been diagnosed with measles. In 1998, only a mere 14% of measles diagnoses turned out to be correct in Australia [3] (Even today, 1 in 10 of all medical diagnoses are incorrect, according to the Society to Improve Diagnosis in Medicine [4]).

Even with widespread use of laboratory screening to confirm or rule out measles, correct diagnoses are not guaranteed, for two reasons:

  • Diagnostic bias promoted by health authorities. For example, the CDC advice to health professionals is “To minimize the problem of false positive laboratory results, it is important to restrict case investigation and laboratory tests to patients most likely to have measles”. Those “most likely” to have measles, of course, are the unvaccinated and those who’ve recently travelled abroad. This, of course, serves to reinforce the current paradigm that vaccination ‘works’ and measles has been eliminated from the US, and the only reason outbreaks still occur is because of travellers and the unvaccinated [5].
  • Laboratory testing is not guaranteed to be correct. The specimen needs to be collected at just the right time, and stored under the right conditions. According to the World Health Organization, dengue fever, chikungunya and zika viruses can also present with fever and rash…and test positive for measles – due to “non-specific reactions or formation of immune complexes that can produce a false positive IgM result in measles or rubella IgM assays [6].”

3. Vitamin A saves lives…but apparently is not as profitable as vaccines.

It has been known for decades that supplementing with Vitamin A substantially reduces mortality rates from infectious diseases in developing countries. In the case of measles, Vitamin A supplementation can halve the mortality rate [7].

In the early 1990’s, control of Vitamin A deficiency in developing nations was declared a major international goal, and lauded as possibly the most cost effective of all health interventions [8-9]. This is because sufficient levels of Vitamin A not only benefit overall health and immunity, but also prevent blindness. Why is it then, that decades later, a country like Rwanda has a 98-99% vaccination rate, but only 3% rate of Vitamin A supplementation [10]?

In developing countries, Vitamin A may be administered intravenously in hospitalized measles cases, but oral Vitamin A supplementation is not promoted for home use (which would potentially avert the need for hospitalisation) [11].

4. How the measles virus was supposedly ‘isolated’

The measles component in today’s vaccine was developed in 1954, by scientist John Enders. In a paper published by The American Journal of Public Health, Enders described how he did it [12]:

First, his team obtained ‘throat washings and blood’ from an 11-yo boy with measles named David Edmonston. When he added it to a specimen of ‘post-natal cells’ (cervical cord? Infant foreskin?), these cells fell ill. He assumed this was caused by the measles virus.

He then added the mixture to a culture of HeLa cells – human cervical cancer cells that are so aggressive, and so prolific, they have managed to contaminate many cell lines all over the world. The fluid that ran out, he poured onto a second culture of cells, and then a third, and so on, until he could see under microscope ‘giant multinuclear cells’. He attributed this to measles virus, not to aggressive cervical cancer cells.

He then passaged the fluid through human kidney cells numerous times, followed by numerous passages through human amnion cells, each passage undoubtedly creating more stress and mutations for the cells. When he injected the resulting fluid into monkeys, some got a ‘mild illness’ that in ‘some aspects’ resembled measles. This was all the proof Enders needed, that he had isolated the viral culprit causing illness in kids.

Enders decided using monkeys was too expensive, so went with chicken embryos to save costs, and today’s vaccine is still prepared on chicken eggs [13].

5. Measles Used to Treat Cancer

In 1973, the British Medical Journal published a case study, describing remission of infantile Hodgkin’s disease after natural measles infection [14]. The 23-month-old child developed measles, before radiotherapy could be started, and the researchers noted, “much to our surprise, the large cervical mass vanished without further therapy”.

In fact, vaccine-strain measles is currently being investigated as a potential treatment for cancer, with early results deemed as “promising”, with open trials still being conducted [15]. Earlier research stated that attenuated live measles virus demonstrated “propensity to preferentially infect, propagate in, and destroy cancerous tissue” [16]. 

It was explained that the reason for using modified viruses was “concerns regarding the potential of wild-type-viruses to cause serious side effects, technical limitations in manufacturing viral lots of high purity for clinical use, as well as the overwhelming excitement and fervent support the, at the time, newly emerging chemotherapy approaches that slowed down research on alternative strategies [17]”.

(Note also that a laboratory-engineered virus strain can be patented, which makes it much more desirable for drug companies).

In 2014, CNN aired the story of a woman with incurable multiple myeloma, who had already endured every type of chemotherapy available for that kind of cancer, two stem cell transplants, yet relapsed time and time again [18].

Scientists from the Mayo Clinic injected the woman with a genetically-engineered measles virus. The woman than experienced a high fever of 105, and vomiting (but declared it was the ‘easiest treatment’ she’d done by far). She went into remission for nine months, and then a small growth had to be removed surgically.

But was it the ‘measles’ virus that affected the cancer, or was it the purgative and cleansing action of the fever and vomiting – self-correcting mechanisms of the human body that are now largely suppressed through modern medicine?

In 1890, a young surgeon at New York City’s Memorial Hospital became dismayed at the frequent failures of surgery to treat cancer. His name was William Coley. He began to dig through the records of the hospital, and was intrigued to find the case of an immigrant dockworker, who was admitted to the hospital with a malignant tumour on his neck. He was later discharged without any treatment…and without any further sign of tumour on his neck [19].

William Coley tracked the man down, and found him in good health. It turned out that while the man was in hospital awaiting surgery, he developed a severe case of erysipelas, a painful red inflammation on the skin, accompanied by high fevers. The sarcoma on his neck vanished.

Coley began to experiment on those with inoperable cancers, by injecting bacterial endotoxins to produce a high fever, with an estimated cure rate of 60% (far surpasses the success rate of today’s treatment for stage 4 cancers). Note that the treatment was only successful if fever and skin eruption could be induced.

His product, Coley’s Toxins, was used all over the United States and Europe, but in the post-war years, when science and medicine were enthralled by the promise of ‘cutting edge’ technology such as radiation and chemotherapy, ‘fever therapy’ fell out of favour, and in 1962, Coley’s Toxins were banned by the Food and Drug Administration.

Ironically, ‘immunotherapy’ to treat cancer is now regarded as the ‘hottest area of cancer research’ [20]. Perhaps, if we looked at why people’s immune system had become so dysregulated to start with…?

Other random findings:

While still on the subject of measles, it would appear the current MMR vaccine was approved without having been tested in clinical trials, but rather, based on studies of the individual components.

The vaccine insert for the current MMR II vaccine references numerous studies, but they are ALL for the individual components of the vaccine, not the MMR vaccine [21].

There is one (small) study mentioned that appears to have been based on the MMR II vaccine but…no references are provided.

Clinical trials are generally conducted in phases of ever-increasing numbers of participants. Phase 1 trials usually involve 20-100 healthy volunteers. Phase II usually involves 100-300 volunteers from the target market. And phase III usually involves 300-3000 volunteers from the target market. So, we’d expect to see more than just one study referenced for a new vaccine.

A visit to Merck’s website leaves us none the wiser. The same small study is promoted, but still, puzzlingly, no references are given for said study [22].


Since being approved, more and more adverse reactions have become apparent [23]:

Additionally, Merck stopped making the single vaccines in 2009, so if one wanted to be vaccinated for ‘measles’, they must have the triple-antigen vaccine [24].

References:

 [1] Chen WJ. Comparison of LiST measles mortality model and WHO/IVB measles model. BMC Public Health. 2011;11 Suppl 3(Suppl 3):S33. Published 2011 Apr 13. doi:10.1186/1471-2458-11-S3-S33.

[2] Boulianne N, De Serres G, Duval B, Joly JR, Meyer F, Déry P, Alary M, Le Hénaff D, Thériault N. Département de santé communautaire, Centre Hospitalier de l’Université Laval. [Major measles epidemic in the region of Quebec despite a 99% vaccine coverage] [Article in French]. Can J Public health. 1991 May-Jun;82(3):189-90].

[3] Francombe H. Measles diagnosis unreliable, Australian Doctor, Feb 18, 2000.].

[4] Society to Improve Diagnosis in Medicine. Reducing Harm From Diagnostic Error, http://www.improvediagnosis.org/. Accessed October, 2017

[5] Centers for Disease Control and prevention, Manual for Surveillance of Vaccine-preventable Diseases: Measles, https://www.cdc.gov/vaccines/pubs/surv-manual/chpt07-measles.html. Accessed February, 2019.

[6] WHO, Manual for the Laboratory-based Surveillance of Measles, Rubella, and Congenital Rubella Syndrome, https://www.who.int/immunization/monitoring_surveillance/burden/laboratory/manual_section4.2/en/. Accessed February, 2019.

[7] SOMMER A. Vitamin A prophylaxis, Archives of Disease in Childhood 1997;77:191-194.

[8] World Bank. World development report 1993: investing in health. Washington DC: World Bank/New York: Oxford University Press, 1993.

[9] National strategies for overcoming micronutrient malnutrition. 45th World Health Assembly (agenda item 21), 1992. World Health Organisation, Geneva.

[10] UNICEF, Statistics: Rwanda, https://www.unicef.org/infobycountry/rwanda_statistics.html#114. Accessed September, 2017.

[11] Mayo Clinic, Measles: https://www.mayoclinic.org/diseases-conditions/measles/diagnosis-treatment/drc-20374862. Accessed February, 2019.

[12] Enders J et al, Measles Virus: A Summary of Experiments Concerned with Isolation, Properties and Behavior, Am J Pub Health, 1957, 47(3):275-282.

[13] CDC, Prevention of Measles, Rubella, Congenital Rubella Syndrome, and Mumps, 2013 Summary Recommendations of the Advisory Committee on Immunization Practices (ACIP), MMRW, 2013, 62(4), pp 8.

[14] Mota C. Infantile Hodgkins’ disease: remission after measles. BMJ, 1973; 2(5863): 421.

[15] Aref S, Bailey K, Fielding A. Measles to the Rescue: A Review Of Oncolytic Measles Virus. Viruses, 2016; 8(10):294.

[16] Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: An overview. Curr Opin Mol Ther, 2009, 11(1): 43-53.

[17] ibid

[18] CNN, Measles virus used to put woman’s cancer into remission, https://edition.cnn.com/2014/05/15/health/measles-cancer-remission/index.html. Accessed February, 2019.

[19] Engelking C, Germ of an Idea: Coley’s Cancer-Killing Toxins, Discover Magazine, http://discovermagazine.com/2016/april/11-germ-of-an-idea. Accessed February, 2019

[20] Ibid

[21] FDA, MMR II vaccine, https://www.fda.gov/downloads/BiologicsBloodVaccines/UCM123789.pdf. Accessed February 2, 2019.

[22] MerckVaccines.com, Seroconversion Rates, https://www.merckvaccines.com/products/mmr/seroconversion-rates. Accessed February, 2019.

[23] FDA, Measles, Mumps and Rubella Virus Vaccine, Live, https://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094050.htm. Acessed February 2, 2019.

[24] CDC, Q&A’s About Monovalent MMR vaccines, https://www.cdc.gov/vaccines/hcp/clinical-resources/mmr-faq-12-17-08.html. Accessed February 2, 2019.

How Vaccines Are Really Made

  1. First, collect the nasal or throat washing or urine of someone suspected of having the disease [1]. Or…if you were Jonas Salk or Albert Sabin, inventors of first polio vaccines, you collected the feces from people suspected of having polio, and then diluted it in water [2]. Refrigerate.
  2. Next, prepare a culture of monkey cells or mashed chicken embryos, by cutting them up, and adding chemicals to make them mutate and turn cancerous [3].
  3. Now, arrange these cells, single layer, into a lab vessel, and add a digestive enzyme from pig or cow pancreas’ called Trypsin. Take care to use gloves and splash goggles, because you do not want pure trypsin getting in your eyes…and careful not to add too much, or you’ll kill the cells outright [4].
  4. Next, add a nutrient broth and sugar to the by now stressed cells and allow them to marinate (recover) for a couple of days [3].
  5. Now take your original specimen of snot/phlegm/urine from the fridge, add to the monkey/chicken cells, and then place in a warm incubation chamber.
  6. After one hour, inspect the mixture with a microscope, and if 50% of the cells are now distorted, you’re on a winner! Scrape the cells into a medium, such as diluted blood of an unborn cow (fetal bovine serum [5]). Store at -70C and you now have a ‘pure isolate’ with which to make a vaccine!
  7. Next, you take cells that have a) descended from a baby that was aborted 60years ago, whose cells have been kept alive artificially, and replicating ever since [6], or b) cells that have descended from the kidneys of an African green monkey, and kept alive artificially, and replicating in a laboratory [7], or c) cells from a cocker-spaniel that were harvested in 1958, and have not only been kept alive and replicating ever since, but have been turned cancerous [8], and then infect these cells with your ‘pure virus isolate’. Give it some time, so all the cells can get ‘infected’ [9].
  8. Collect the fluid (cellular waste products) that runs out while the virus is ‘replicating’ in the incubation tanks, and pass it through a sieve and separator [10].
  9. Add some benzonase, which is a genetically engineered endonuclease produced in e.Coli, that attacks and degrades DNA and RNA [11].
  10. Next, add formaldehyde to ‘inactivate’ it.
  11. Now, time to filter and concentrate it, via ultracentifugion, which spins the fluid at super high speed to separate tiny particles from larger particles [10].
  12. Add some more benzonase to digest any leftover monkey/human DNA fragments that remain. This process is obviously not fool-proof, since DNA fragments are still found in the finished product
  13. Add some more chemicals to your ‘pure, concentrated product’:
  • Stabilisers, such as albumin from the blood of other humans, or produced by yeast cells that have had the gene for human albumin inserted into them.
  • Emulsifiers, such as Polysorbate 80, to stop the vaccine contents from separating.
  • Acidity regulators, such as borax (sodium borate), to maintain pH balance [12].

Your product is now ready to be added to vials, and distributed.

If you’re making an egg-based vaccine, such as the influenza vaccine, the process is slightly different. Instead of adding your ‘pure virus isolate’ to a cell culture, you inject it into fertilised eggs and let the chicken embryo ‘manufacture’ your virus for you. After about 72hrs, a machine sucks out the contents of the egg, which are then spun at super-high speeds and filtered. You can then carry on adding the chemical formulations to finish your product [13].

It takes approximately one egg to make one vaccine, so that equals around 500 million eggs used every year, to manufacture flu vaccines [14].

Egg-based vaccines take about 4 months to make one batch of vaccines [15], which is obviously time-consuming, and probably why manufacturers are looking for different methods of manufacturing…

The above descriptions may vary slightly depending on what virus or medium or manufacturing system you are using, but that is basically how the process works for viral vaccines. (For toxoid vaccines, such as tetanus and diptheria, the bacterium is encouraged to produce toxins, which are then ‘inactivated’ via centrifugion, or formalin treatment, and then adsorbed onto aluminium salt [16].)

Now, I know what you’re thinking. Surely, today’s modern vaccines are not so crudely made? You’re almost right! Although vaccine manufacturing facilities today are highly computerised and stainless steel, a number of vaccines are still made as described above. But newer vaccines, such as the Hepatitis and HPV vaccines are made somewhat differently.

They don’t use a virus, they take certain ‘key molecules’ said to come from the virus in question, and then insert them into an insect cell culture, or yeast culture to reproduce the desired quantities.

As you can imagine, a few ‘key molecules’ don’t create much of an immune reaction, which is why adjuvants, such as aluminium hydroxide are required [17].

The HPV vaccine has to be manufactured this way, because nobody has yet figured out a way to entice cell cultures to produce human papillomavirus (make of that what you will) [18].

Another new technology now being explored is DNA vaccines – using naked DNA particles said to come from the pathogen in question, which are then coated onto gold particles and shot directly into muscles via the use of a helium gas-pressurised gun, such as used in gene therapy [17].

Note that Points 1-6 are set out in ‘The Vaccine Papers’, by Janine Roberts, based on a CDC/WHO document titled ‘Isolation and Identification of Measles Virus in Culture’. That document was edited, and some things removed, after Roberts drew attention to it in radio interviews. The full script of the original document can be found in her book [1]. The amended version is still online here.

References:

  1. Roberts J. The Vaccine Papers, Impact Investigative Media Productions, Wigan UK, 2010.
  2. Sabin AB, Boulger L, History of Sabin Attenuated Poliovirus Oral Live Caccine Strains I J Biol Stand, 1973, 115, 115-118.
  3. NPTEL, Lecture 6: Isolation and purification of viruses and components, https://nptel.ac.in/courses/102103039/6. Accessed February 3, 2019.
  4. MSDS for Trypsin, https://www.lewisu.edu/academics/biology/pdf/trypsin.pdf. Accessed February 2, 2019].
  5. Humane Research Australia, Use of Fetal Calf Serum, http://www.humaneresearch.org.au/campaigns/fetal_calf_serum, Accessed February 2, 2019
  6. Fletcher, MA; Hessel, L; Plotkin, SA (1998). “Human diploid cell strains (HDCS) viral vaccines”. Developments in Biological Standardization. 93: 97–107.
  7. Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. 2008;Appendix 4:Appendix 4E.
  8. Omeir RL, Teferedegne B, Foseh GS, et al. Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells. Comp Med. 2011;61(3):243-50.
  9. VxP Biologics, The Vero Vaccine Production Pipeline, https://www.vxpbiologics.com/the-vero-vaccine-production-pipeline/. Accessed February, 2019.
  10. Ibid
  11. Sigma Aldrich, Benzonase Nuclease, https://www.sigmaaldrich.com/catalog/product/sigma/e1014?lang=en&region=AU. Accessed February, 2019.
  12. Oxford Vaccine Group, Vaccine Ingredients, http://vk.ovg.ox.ac.uk/vaccine-ingredients#human serum albumin, Accessed January, 2019.
  13. The Telegraph, From chicken egg to syringe: How a flu vaccine is made, https://www.telegraph.co.uk/finance/newsbysector/pharmaceuticalsandchemicals/11138586/how-a-flu-vaccine-is-made-from-chicken-egg-to-syringe.html. Accessed February 3, 2019.
  14. Precision Vaccinations, 500 million easter eggs could be saved by the FDA, https://www.precisionvaccinations.com/chicken-eggs-produce-90-flu-vaccines. Accessed February 2, 2019.
  15. Singapore Government, Health Science Authority, Understanding Vaccines, Vaccine Development and Production, https://www.hsa.gov.sg/content/hsa/en/Health_Products_Regulation/Consumer_Information/Public_Advisories/Influenza_A_H1N1_information/H1N1_Vaccines/understanding-vaccines–vaccine-development-and-production.html. Accessed January, 2019.
  16. Plotkin S, Orenstein WA, Edwards K, Plotkin’s Vaccines, 7th Edition, 2018.
  17. Roberts J. The Vaccine Papers, Impact Investigative Media Productions, Wigan UK, 2010.
  18. Dixit R, Bhavsar C, Marfatia YS. Laboratory diagnosis of human papillomavirus virus infection in female genital tract. Indian J Sex Transm Dis AIDS. 2011;32(1):50-2.